Super User

Super User

Héctor Iván González Camarillo

Tutor: Carlos A. Pérez-Rábago

Abstract

En este trabajo se presenta el diseño, construcción y la puesta en operación de un prototipo de sistema de control en lazo abierto para helióstatos de torre central, en el que se hace una propuesta de diseño económica capaz de abastecer los requerimientos y especificaciones necesarias para catalogar como eficiente y robusto el desarrollo del prototipo. Dicho sistema de control, permitirá poner en operación un mini helióstato de 5.6 𝑚!, y con la metodología de programación aplicada correctamente a este proyecto, se podrá interactuar con una interfaz de monitoreo de las variables en tiempo real del helióstato. Variables tales como el vector solar, la hora estándar, la posición angular del helióstato en todo momento y la posición en la que el helióstato debe referenciarse de acuerdo con un target de apuntamiento.

Para el diseño del dispositivo se realizó una revisión bibliográfica de los conceptos necesarios para poder desarrollar el proyecto, posteriormente se realizó un análisis de los componentes y equipo necesario para implementar una solución al diseño del sistema de control. Se hace mención que el análisis de los componentes se hace de acuerdo a las características y especificaciones del helióstato, ya que se contaba con la estructura de éste, de acuerdo con esto los componentes fueron categorizados y cotizados para el sistema de control.

Adjunto al diseño, se realizó un análisis del algoritmo de posición solar que se implementaría para obtener el vector solar, por cuestiones de práctica se optó por utilizar el algoritmo de Duffie & Beckman, el cual realiza operaciones con ecuaciones que comprenden constantes como la posición geográfica del helióstato, la hora estándar y el día Juliano de acuerdo a la fecha actual.
Posteriormente se diseñó una interfaz en LabVIEW que se muestra en una PC conectada por medio de cable Ethernet al controlador principal y que mediante protocolo TCP/IP transmite los datos en forma de texto para interactuar con la interfaz en la que se puede monitorear las variables en tiempo real.

El sistema de control se implementó de acuerdo a la solución de diseño en el cual funge como controlador principal un Arduino Mega 2560 que realiza los cálculos del algoritmo y la adquisición de datos de los encoders, así como la obtención de la fecha y hora en tiempo real mediante un módulo externo, motivo por el cual se buscaba establecer una autonomía respecto al cálculo del vector solar, y no tener cierta dependencia de la PC para realizar este tipo de cálculos.

Como etapa final se realizaron una serie de pruebas de validación del funcionamiento de cada una de las etapas del sistema, tanto en la etapa de control como la etapa de potencia y se determinó el funcionamiento eficiente del sistema propuesto.

Diseño, Construcción y Puesta en Operación de un Prototipo de Sistema de Control para Helióstatos de Torre Central

Brenda Valeria Bocanegra Zagal

Tutor: Carlos A. Pérez Rábago

Abstract

El Horno solar de altos flujos radiativos (HoSIER) es una instalación del Laboratorio Nacional de Sistemas de Concentración y Química Solar (LACYQS). El HoSIER  tuvo una primera etapa donde se construyeron las principales estructuras para poder concentrar energía solar, estas estructuras son un helióstato de 36 m2, un atenuador de 42.2 m2 y 211 espejos hexagonales de vidrio pulido, con cinco radios de curvatura distintas, los cuales se encuentran soportados en una estructura paraboloidal, los cuales conforman el concentrador. Posteriormente se hizo un helióstato plano de mayor tamaño (81 m2), así como se agregaron más espejos hexagonales al concentrador para completar 409 y componentes periféricos como la mesa de experimentación y un sistema de refrigeración los cuales son controlados y monitoreados mediante un sistema SCADA.

Para la segunda etapa se pretende desarrollar experimentación con reactores termoquímicos y fotoquímicos, además de realizar estudios térmicos  destructivos de materiales y para ello es necesario equipar  a la mesa de experimentación  con sistemas de alimentación de gases, sistemas de análisis de gases y equipos de medición de temperatura de no contacto.

Los sistemas de alimentación y análisis de gases son parte fundamental para la experimentación en reactores termoquímicos ya que al realizar ciclos termoquímicos basados en óxidos metálicos permiten la obtención de hidrogeno mediante la ruptura de la molécula de vapor de agua. Esto sucede mediante la reducción térmica de un oxido metálico con energía solar altamente concentrada obteniendo así la liberación de oxígeno. La reducción reacciona con agua y de esta forma  se libera hidrógeno y se recupera el óxido de partida.
Los sistemas de alimentación y análisis de gases se diseñaron en base a los requerimientos de algunos experimentos termoquímicos, además de que ya se tenía algunos de los componentes fue necesario agregar al diseño instrumentación electrónica para crear un sistema de alimentación y analísis de gases automatizado.

Para los dispositivos de los susbsistemas de alimentación y análisis de gases es necesario controlar y monitorear su comportamiento durante los experimentos. Para ello se utilizó programación en el entorno de LabVIEW además se utilizaron módulos para Compact RIO de National Instruments para realizar pruebas y adquisición de los datos entregados por los analizadores químicos.

Integración de equipos de análisis químico y térmico en la mesa de experimentación del Horno Solar de Altos Flujos Radiativos

María Militza Rosales Valles

Tutor: Dr. Camilo A. Arancibia Bulnes

Abstract

Un helióstato dentro de la tecnología de torre central es el dispositivo encargado de recibir y concentrar la radiación solar en un receptor. En Hermosillo, Sonora, México la UNAM en colaboración con la UNISON están desarrollando el Campo Experimental de Torre Central (CEToC), parte de las actividades que ahí se realizan se orientan al análisis del diseño, construcción, evaluación y caracterización de nuevos prototipos de helióstatos. La búsqueda de mejoras a los prototipos de helióstatos existentes en el CEToC se encamina a la optimización de su operación y abaratamiento de su manufactura. El presente trabajo describe el desarrollo de un prototipo de helióstato de 37.44 m2. Entre las mejoras incorporadas al presente diseño está una configuración de facetas en herradura, para que el helióstato sea abatible y disminuir así el ensuciamiento por polvo en el área reflejante; peso aligerado, a través de la reducción del espesor del vidrio y el consecuente aligeramiento estructural; un cabezal más barato y preciso, así como más ligero. Se simularon distintas formas de superficie para las facetas, esto para evaluar el desempeño de concentración de este sistema óptico, de esta manera se observó la factibilidad de aumentar la concentración propiciando la deformación de facetas, siempre y cuando éstas sean de los helióstatos cercanos a la torre. El criterio de diseño del nuevo marco estructural se rigió por la selección de componentes de dimensiones comerciales, evitando desperdicio de material y aminorando el trabajo de manufactura. Se simuló el comportamiento mecánico estructural del nuevo prototipo, de este análisis se deduce que el modelo carece de rigidez, y por tanto presenta grandes desplazamientos y deformaciones. Dichas características son indeseables en un concentrador óptico pues la calidad de la imagen que reflejan es deficiente. El nuevo helióstato se instaló en el CEToC, en donde se llevaron a cabo diversas pruebas para evaluar el desempeño global del prototipo. Estas pruebas fueron: mancha solar formada por el helióstato, reflexión de franjas, medición de la deformación de la estructura. Finalmente, se discuten los resultados de estas pruebas y se formulan conclusiones recomendaciones para trabajo futuro.

Diseño, Puesta en operación y Evaluación de un Helióstato con facetas Deformables

Víctor Manuel Maytorena Soria

Tutor: Dr. Jesús Fernando Hinojosa Palafox

Abstract

El estudio de la transferencia de calor en cavidades abiertas es un tema de gran interés por sus aplicaciones en varios campos de la ingeniería térmica como: diseño térmico de receptores en sistemas termosolares, enfriamiento de dispositivos electrónicos, construcciones, etc. Entre los mecanismos de transporte de calor en estos sistemas, la convección natural ocupa un lugar importante al estar siempre presente en cavidades abiertas.

Se han reportado en la literatura varios estudios de transferencia de calor en cavidades abiertas que pueden ser clasificados como: numérico, experimental y numérico- experimental. En el presente trabajo se plantea un estudio experimental y numérico de la convección natural turbulenta en una cavidad cúbica abierta considerando la influencia de la radiación.

Se consideraron diferentes flujos de calor constante (75, 150, 300, 450 W) en la pared vertical opuesta a la abertura, mientras que el resto de las paredes se aislaron térmicamente. Se analizó el efecto de la emisividad de las paredes considerando dos casos con emisividades reportadas en la literatura: (a) paredes cubiertas de aluminio pulido (0.05) y (b) las paredes están pintadas de negro (0.9).

Se utilizó el software de dinámica de fluidos computacional FLUENT 6.3 para realizar la simulación de cada caso experimental, se consideraron las propiedades termofísicas variables con la temperatura, se seleccionó el modelo de turbulencia k- y el esquema MUSCL en la discretización de los términos advectivos, el método de Coordenada Discreta para la Solución de la Transferencia de Calor por Radiación y para el acoplamiento de las ecuaciones se implementó el algoritmo SIMPLEC. Una vez obtenida la información numérica se compararon los perfiles de temperatura y coeficientes de transferencia de calor con los datos experimentales, también se muestran
y analizan los campos numéricos de: temperatura, magnitud de la velocidad y viscosidad turbulenta.

El espesor de la capa límite térmica adyacente a la pared caliente, se midió experimentalmente y se calculó mediante CFD, observándose un espesor que varió entre 0.025 m y 0.03 m, dependiendo de la emisividad de las paredes. Con los resultados obtenidos se determinó que los coeficientes de transferencia de calor aumentan con la emisividad y también que las diferencias porcentuales entre los valores experimentales y numéricos de los coeficientes de transferencia de calor y números de Nusselt promedio, aumentaron con la participación de la radiación.

Estudio teórico-experimental de la transferencia de calor conjugada en una cavidad cubica abierta en régimen turbulento

Pablo Sosa Flores

Tutor: Dr. Rafael E. Cabanillas López

Abstract

En este trabajo se presentan las etapas de diseño de un horno solar de alta concentración con capacidad de 1kW térmico, para el cual han sido analizadas diversas opciones en cuanto a arreglos de los componentes ópticos; así como también de distintos mecanismos y sistemas de movimiento para apuntamiento solar en la operación del horno. Para esto han sido empleadas distintas herramientas y técnicas de diseño como son las simulaciones ópticas mediante trazado rayos y modelado asistido por computadora de elementos mecánicos. En base a simulaciones, se evaluaron las características de desempeño general del horno para diversos días del año y con distintos tipos de concentradores. Se presentan también las características de los mecanismos de movimiento para el helióstato del horno, los cuales son únicos en su tipo para esta aplicación. Es presentada la metodología y los resultados de pruebas de caracterización del horno para determinar sus principales propiedades, como son la eficiencia óptica, nivel de concentración, potencia del sistema y cuantificación de la desviación (deriva) que presenta el horno en conjunto.

Desarrollo de una metodología para el diseño y caracterización de un horno solar centrado en el eje con capacidad térmica de 1kW

Ricardo A. Pérez Enciso

Tutor: Dr. Claudio A. Estrada Gasca

Abstract

En este trabajo de investigación se determinó el error óptico global, el pico máximo de concentración solar y la potencia del Horno Solar del IER, por medio de su caracterización óptica y térmica, aplicando metodologías novedosas y utilizando dispositivos especializados que son únicos en su tipo.

En la caracterización óptica del horno, se determinaron de manera teórica las distribuciones de flujo radiativo concentrado en la zona focal y se obtuvieron las distribuciones reales por medio de dispositivos que permitieron realizar mediciones de manera directa e indirecta de la radiación solar altamente concentrada en la zona focal.

Para la caracterización térmica, se diseñó y construyó un calorímetro de cavidad para la medición directa de la potencia del horno y se realizaron pruebas de fundición de diversos materiales para conocer la temperatura que es capaz de alcanzar.

Los resultados obtenidos del error óptico, del pico máximo de concentración solar y de la potencia del horno solar del IER mediante su caracterización óptica y térmica, indican que es un instrumento de investigación científica de gran calidad, lo que permitirá realizar pruebas y experimentos en México como se hacen en hornos similares en otras partes del mundo.

Caracterización óptica y térmica del horno solar del IER

José María Serrano Cornelio

Tutora: Dra. Heidi Isabel Villafán Vidales

Abstract

La creciente demanda energética provocada por el rápido incremento poblacional, ha llevado a un agotamiento de las reservas de combustibles fósiles, además de un gran impacto ambiental, ocasionado por las altas emisiones de CO2 generadas en los procesos de transformación que tienen lugar en el sector industrial. La energía solar se postula como una alternativa con gran potencial para mantener la disponibilidad energética en un plano a futuro, reduciendo en gran nivel las altas emisiones de CO2.

Dentro de las tecnologías de concentración solar, las cuales aprovechan la energía solar para transformarla en otro tipo de energía, los reactores solares utilizan la radiación concentrada transformándola en energía térmica, la cual se usa después para llevar a cabo una reacción química endotérmica. A este proceso se le denomina “termoquímico solar”. Un reactor solar es un receptor diseñado para operar a altas temperaturas, minimizando las pérdidas de calor y favoreciendo el intercambio térmico y másico entre las especies que participan en la reacción.

En esta tesis se realiza una propuesta de diseño de un reactor solar destinado a la gasificación, por vapor de agua, de coque de petróleo. El coque de petróleo es un producto residual con un alto contenido de carbono, resultante del proceso de pirolisis de las fracciones pesadas que se obtienen en la refinación del petróleo. Una característica del coque que permite considerarlo como una alternativa de mediano y largo plazo para la generación de electricidad o de vectores energéticos como el hidrógeno, es su poder calorífico equivalente al 80% del de un residual líquido, como el combustóleo. Además, al ser combinado con agua mediante la reacción endotérmica de “gasificación solar”, se produce un gas de síntesis con un valor energético mucho mayor. Este trabajo es una propuesta de optimización para un reactor preliminar diseñado en el Instituto de Energías Renovables (IER) de la Universidad Nacional Autónoma de México (UNAM) y que forma parte de una tesis doctoral en desarrollo.

Se realizó una extensa revisión bibliográfica sobre los reactores solares destinados a la gasificación de materiales carbonáceos. En base a esta revisión, se realizan diversas modificaciones en el diseño del reactor, y se proponen dos estudios: El primero consiste en un análisis de distribución de radiación en la zona focal y en la ventana de cuarzo del reactor. En este análisis se realizan diversas simulaciones para conocer la densidad de flujo solar en la zona focal, en donde se coloca la muestra de coque, y fuera de la zona focal, en donde se posiciona la ventana de cuarzo que permite el paso de la radiación al interior del reactor. Con los datos resultantes, se determina la distancia de posicionamiento de la ventana a la cual se obtiene una potencia o flujo con el que la muestra pueda alcanzar las temperaturas de reacción necesarias. Además, mediante estos datos es posible determinar las temperaturas máximas y promedio a las que se expone la ventana, para así poder evitar que éstas sobrepasen los límites a los que el material puede llegar sin deformarse o quebrarse. En el segundo estudio se determina la mecánica de los fluidos de arrastre en el interior del reactor. Para esto se llevan a cabo simulaciones, mediante Dinámica de Fluidos Computacional, en ausencia de radiación y a un determinado flujo másico, obteniendo así la magnitud de los vectores de velocidad producidos dentro del reactor. Para comprender el funcionamiento del modelo y del software, se describen algunas de las propiedades termofísicas de los fluidos, las ecuaciones que rigen el fenómeno a estudiar, se realiza una explicación general de los métodos de solución numérica y una breve definición del concepto y modelado del fenómeno de turbulencia. Posteriormente se realiza el análisis de flujo en el diseño preliminar y se propone una optimización del mismo.
La descripción detallada de las piezas del reactor preliminar, junto con las del diseño óptimo, resultante de los estudios antes mencionados, se realiza al final. Además, se lleva a cabo una breve explicación de algunos dispositivos y accesorios utilizados, y la selección de los materiales adecuados para su construcción.

Estudios preliminares en el diseño de un reactor solar para la gasificación por vapor de coque de petróleo

Manuel Ignacio Peña Cruz

Tutor: Dr. Camilo A. Arancibia Bulnes

Abstract

A lo largo de este documento, se realiza una breve introducción a la tecnología solar. Se destacan sus características esenciales y los principales componentes que la conforman. Además, se describen las bases y el funcionamiento de diversas metodologías de caracterización óptica de concentradores solares que han surgido a través de los años gracias al esfuerzo de diversos autores. Se presenta en detalle la teoría detrás de la técnica de Reflexión de Franjas (también llamada Deflectometría a lo largo del documento). Esta técnica está basada en los principios de la interferometría, pero que para este trabajo es modificada y adaptada como herramienta de caracterización de superficies especulares de concentradores solares, debido a las múltiples ventajas que ésta presenta sobre otras técnicas. Se hace énfasis en el desarrollo de los lineamientos a seguir, con la finalidad de obtener un proceso riguroso y estandarizado para efectuar una correcta evaluación del captador y en la descripción de la matemática involucrada durante el proceso. Así mismo, se hacen notar las particularidades a superar en cada uno de los ellos.

La metodología desarrollada para la cualificación óptica de concentradores solares entra en la categoría de las técnicas de reflexión de luz estructurada, en la cual, patrones de franjas sinusoidales son proyectados en una pantalla y su reflejo en una superficie especular es adquirido como imagen por una cámara digital. Las distorsiones observadas en la imagen se pueden relacionar directamente con desviaciones de la geometría ideal en la superficie.

Aspectos relevantes de la técnica son su alta resolución espacial (más de un millón de puntos por faceta), un tiempo relativamente corto necesario para la medición y un arreglo sencillo y de bajo costo. La herramienta desarrollada nombrada FOCuS (por el acrónimo del inglés "Fringe Optical Characterization of Surfaces"), es capaz de obtener las desviaciones de pendiente local con respecto al diseño geométrico ideal de diversos tipos de concentradores solares y calcular su valor RMS (media cuadrática), utilizado como un factor de calidad de la muestra.

Caracterización óptica de concentradores solares

Laura Guadalupe Ceballos

Tutor: Dr. Rafael E. Cabanillas López

Abstract

Para el mejor aprovechamiento de la energía solar se encuentran en desarrollo tecnologías que buscan operar a las temperaturas más altas posibles. El uso de concentradores ópticos de la radiación solar es un factor común en dichas tecnologías. Una de las tecnologías de concentración solar con amplio potencial tanto en la generación de energía eléctrica como de calor de proceso es la conocida como Torre Central. Los Sistemas de Torre Central poseen un receptor solar colocado en la parte alta de una torre donde recibe la radiación reflejada por un campo de heliostatos. Los receptores son los dispositivos encargados de recibir la radiación solar concentrada y transformarla en calor disponible para ser usada por un fluido de trabajo. Dadas las condiciones de operación de estos sistemas los materiales de los receptores son una parte crucial de la eficiencia y desempeño de los mismos. El uso de superficies cerámicas para receptores solares en Sistemas de Torre Central presenta ventajas que otros materiales carecen. En este trabajo se realizó un extenso análisis del estado del arte, de los materiales utilizados en la construcción de receptores de Torre Central con la finalidad de identificar las principales alternativas, ventajas y desventajas de diferentes materiales. Es conocido que el carburo de silicio es un material cerámico que presenta una buena estabilidad y durabilidad a temperaturas altas, sus propiedades termo-mecánicas y de absortancia espectral a la radiación solar, lo coloca como uno de los materiales más prometedores para estas aplicaciones. En este estudio se evaluó el SiC sintetizado por dos métodos buscando contar un material homogéneo y de propiedades controladas para ser evaluado en aplicaciones de receptores solares operados a altas temperaturas.

Dos métodos de síntesis de SiC fueron utilizadas en este estudio: el método de reducción magnesiotérmica y el de reducción carbotérmica, siendo el primero a relativamente bajas temperaturas (650°C) y el segundo a altas temperaturas (1500°C), ambos en atmósferas inertes. En ambos métodos se ha utilizado sacarosa como precursor de carbón, siendo un material de bajo costo y fácil disposición, y sílice sintetizada como precursor de silicio, que además de ser también de bajo costo, se obtiene de manera rápida y sencilla. En el método de reducción magnesiotérmica se han utilizado además, otros dos precursores de silicio: sílice comercial y SBA-15.
Finalmente se realiza una comparación entre los SiC obtenidos por los dos métodos y el SiC comercial por medio de la caracterización de estos materiales, así como la medición de dos propiedades esenciales en los receptores solares: la absortancia espectral a la radiación solar y la porosidad, mostrando en ambos casos valores sustancialmente mejores en los SiC sintetizados que en el comercial, lo que abona a la finalidad de este estudio de usarse en receptores solares en altas temperaturas en Sistemas de Torre Central.

Síntesis y evaluación de carburo de silicio para aplicaciones en receptores solares volumétricos

Página 3 de 12

Videos HoSIER

Entrevista HoSIER Factor Ciencia Canal Once (14/12/2015)