Jorge Mondragón Robles
Tutor: Dr. Jesús Fernando Hinojosa Palafox
Abstract
Una forma de aprovechar la energía solar es convertirla en energía térmica a alta temperatura mediante dispositivos de concentración solar. Los sistemas de torre central se utilizan para la producción de electricidad a partir de la radiación solar concentrada por grandes espejos planos (helióstatos). Un receptor colocado en la parte superior de la torre transfiere la energía solar a un fluido para su posterior aprovechamiento. En este trabajo se realiza un estudio numérico de la convección natural y forzada en régimen turbulento en el receptor de un sistema termosolar de torre central, el receptor rectangular de cavidad tiene dimensiones de 1 m x 2 m x 2 m, donde la pared opuesta a la abertura se mantiene a una temperatura uniforme y constante. Se analizaron 7 temperaturas de esta pared del receptor: 400, 500, 600, 700, 800, 900 y 1000 K. Para el caso donde se toma en cuenta la convección forzada se consideraron dos corrientes de aire por separado, una con orientación perpendicular a la abertura y dos velocidades de viento de 5 y 10 m/s; otra con orientación paralela a la abertura y mismas dos velocidades. Se reportan los campos de temperatura, patrones de flujo y el análisis de la transferencia de calor.
Para la solución del problema físico planteado se hace uso del programa de Dinámica de Fluidos Computacional (CFD) Fluent, el cual hace uso del método numérico de volumen finito para la solución de las ecuaciones de conservación. Se utilizó el algoritmo SIMPLE para calcular la presión y la velocidad secuencialmente. Para la discretización de los términos advectivos de las ecuaciones de conservación y turbulencia se hace uso del esquema upwind de segundo orden, y para el término de presión el PRESTO.
Una vez aproximada la solución de estas ecuaciones, se encuentra que el espesor de las capas límites térmicas e hidrodinámicas para convección natural aumentan conforme disminuye el número de Rayleigh. También se reporta la aparición de un plano de simetría para los casos de convección natural y de convección combinada (natural y forzada) con una corriente perpendicular a la abertura. El tomar en cuenta la convección forzada afecta notablemente tanto la distribución de los patrones de flujo como el campo de temperatura dentro de la cavidad.
Por otro lado también destacan los resultados sobre el análisis de la transferencia de calor, en los que se aprecia como el número de Nusselt aumenta con el incremento del número de Rayleigh y de Reynolds. El caso en el que solo se considera convección natural reporta las menores pérdidas de calor siendo de 18.73 kW para un Ra=1.61x1010 (TH=1000 K) y de 2.07 kW para Ra=3.58 x1010 (TH=400 K), en comparación de las más altas registradas para el caso de convección combinada con orientación de viento perpendicular a la abertura y Re=1.26x106 (10 m/s) que son de 31.80 kW para un Ra=1.61x1010 (TH=1000 K) y de 6.25 kW para Ra=3.58 x1010 (TH=400 K), es decir se da un incremento de 70% y 202% respectivamente