Mostrando artículos por etiqueta: 2021 publication

Nidia Aracely Cisneros-Cárdenas, Rafael Cabanillas-López, Ricardo Pérez-Enciso, Guillermo Martínez-Rodríguez, Rafael García-Gutiérrez, Carlos Pérez-Rábago, Ramiro Calleja-Valdez and David Riveros-Rosas

Abstract

The radiation flux distributions produced by the concentrating solar systems used to produce thermal/electrical power are usually non-homogeneous. This results in non-uniform temperature distributions on the solar receivers, causing adverse effects on the system’s overall performance. An approach to better understand the problem is to study the surfaces around the focal zone where the radiation density is homogeneous (isosurfaces), generating them from experimental data. For this, it is necessary to superimpose built volumes of the different irradiance levels using parallel planes in different directions from the focal point of a concentrator. These volumes are known as effective volumes. This study presents the model used to generate effective volume produced by a point focus concentrator, comparing it with experimental results in a direction perpendicular to the focal axis. The effective volumes were developed considering a global optical error of the system of 2.8 mrad. The set of methods used to generate effective volumes has not been previously presented in the literature. The theoretical-experimental research consisted of the combination of the camera-target method and the simulations by the ray-tracing technique. The results showed effective volumes with the highest value of 10 MW/m2 and the lowest value of 4.5 MW/m2.

Study of the Radiation Flux Distribution in a Parabolic Dish Concentrator

Publicado en Revistas Arbitradas

Jazael Gómez, Arturo Estrada, Argelia Balbuena Ortega, Oscar Arredondo, Rocío Nava, Raul Barbosa, Dulce Capitanachi & Karen Lozano

Abstract

Hybrid graphemne-fiber systems could present an alternative for various industrial applications in need of large area graphene sheets. One way to produce these carbon-based structures is by subjecting an aqueous polyvinyl alcohol solution containing sodium chloride to centrifugal spinning under high humidity conditions. The developed polymer fibers are then subjected to a dehydration and carbonization process to promote the formation of the hybrid carbon structure. Potential applications of this material are highly dependent upon their conducting properties. In this work we analyzed the effect of the NaCl content and humidity conditions during the spinning process and ultimate thermal conductivity of the resultant hybrid graphene-fiber carbon systems. Results show an optimum NaCl added to the carbon precursor solution and spun at a high relative humidity (around 70%) promote the development of veils of graphene oxide multilayer that interconnect with produced fibers. We applied for the first time a thermographic method to determine the thermal conductivity of carbon mats. The thermal conductivity of the hybrid fibers increases as graphene multilayers veils expand between carbon fibers, to reach values up to 28 W m K−1.

Thermal conductivity of hybrid multilayer graphene-fiber carbon membranes

Publicado en Revistas Arbitradas

Oscar A. Jaramillo-Quintero, Royer Valentín Barrera-Peralta, Abdel Ghafour El Hachimi, Alfredo Guillén-López, Obed Pérez, Edilso Reguera, Marina Elizabeth Rincón, Jesús Muñiz

Abstract

Increasing the electrochemical performance of electrode materials in sodium ion batteries (NIBs) remains a major challenge. Here, a combined experimental and theoretical investigation on the modification induced by Sb2S3 embedded in a heteroatom-doped 3D carbon matrix (CM) for efficient anodes in NIBs is presented. The structural and chemical characterization demonstrates the successful doping of 3D CM with S and Sb atoms. When evaluated as anode materials for NIBs, the heteroatom-doped nanocomposites delivered a better cycling stability and superior rate capability than those of undoped Sb2S3/CM anodes. First principle calculations were used at the Density Functional Theory level to systematically study the Sb2S3/CM and Sb2S3/heteroatom doped-CM composites, as NIBs anodes. Doping the carbon substrate by heteroatoms improved the adsorption of Sb2S3 on the matrix and allowed for ionic/covalent attraction with the Sb2S3 nanoparticle, respectively. Such results could be used to model the stabilty of the composite architectures observed in the experiment, for superior cycling stability.

Understanding the interaction between heteroatom-doped carbon matrix and Sb2S3 for efficient sodium-ion battery anodes

Publicado en Revistas Arbitradas

Diego Ramón Lobato-Peralta, Estefanía Duque-Brito, Heidi Isabel Villafán-Vidales, Adriana Longoria, P.J.Sebastian, Ana Karina Cuentas-Gallegos, Camilo Alberto Arancibia-Bulnes, Patrick U. Okoye

Abstract

The various lignin isolation methods and pretreatments are continuously developing and thermochemical conversion of lignocellulosic biomass and tuning of the activation parameters are vital to obtaining high energy density materials. In this review, different lignin extraction methods, pretreatments, and influence of the extraction conditions on the yield and properties are presented. The thermochemical conversion of lignin-based biomass and application in supercapacitors and hydrogen storage were investigated.

The study revealed that chemical extraction via the organosolv process presents higher purity and partly preserved lignin structure compared to sulfur processes. Different parameters such as the method of extraction, the temperature, pH, resident time, and pressure greatly influences the Kappa value and yield of lignin. The potassium hydroxide (KOH) dosage as an activating agent and the activating temperature is vital to obtaining high surface area and microporosity, which enhances the lignin-based activated carbon performance towards high hydrogen storage and capacitance. Metals doping on activated carbon marginally enhance the hydrogen storage capacity and capacitance, however, reversible desorption of the adsorbed hydrogen requires a higher temperature for hydrogen storage. Besides, high metal doping reduces available surface area, collapses the cage-like structures of fullerenes, and results in lower hydrogen storage capacity of activated carbon.

The presence of heteroatoms on activated carbons enhances the performance towards high hydrogen storage and capacitance. Moreover, techno-economic and exergy-based sustainability analysis of the different lignin isolation techniques must be explored to provide valuable insights on energy and associated operational costs.

A review on trends in lignin extraction and valorization of lignocellulosic biomass for energy applications

Publicado en Revistas Arbitradas

Alejandro Ayala-Cortés, Pedro Arcelus-Arrillaga, Marcos Millan, Camilo A. Arancibia-Bulnes, Patricio J.Valadés-Pelayo, Heidi Isabel Villafán-Vidales

Abstract

Hydrothermal processes are attractive options for the transformation of mixtures of biomass with large amounts of water, i.e. above 20wt. At hydrothermal conditions, the special properties of water makes it an attractive reaction medium to obtain several bio-based platform chemicals or fuel gases, such as hydroxymethilfurfural or fufurals, syngas, hydrogen, methane, etc. However, one of the main challenges is that a large amount of energy is required to heat reactants (mixture of water and biomass), which is usually achieved by combustion of a fraction of the bio-oil product. Therefore, to reduce this consumption, their integration with an external renewable energy source, such as concentrated solar radiation has been proposed. This approach has been recently analyzed by several research groups as an option to have sustainable and economically attractive processes. This work provides an overview of the different experimental and theoretical strategies to incorporate concentrated solar technologies into hydrothermal processing of biomass, including the main challenges of such integration for process technical feasibility.

Solar integrated hydrothermal processes: A review

Publicado en Revistas Arbitradas

Carlos E. Arreola-Ramos,Omar Álvarez-Brito,Juan Daniel Macías,Aldo Javier Guadarrama-Mendoza, Manuel A. Ramírez-Cabrera,Armando Rojas-Morin,Patricio J. Valadés-Pelayo,Heidi Isabel Villafán-Vidales and Camilo A. Arancibia-Bulnes

Abstract

Reticulate porous ceramic reactors use foam-type absorbers in their operation which must fulfill two essential functions: favoring the volumetric effect and increasing the mass and heat transfer by acting as a support for the reactive materials. Heating these absorbers with highly inhomogeneous concentrate irradiation induces high thermal gradients that affect their thermal performance. Owing to the critical function of these component in the reactor, it is necessary to define a selection criterion for the foam-type absorbers. In this work, we performed an experimental and numerical thermal analysis of three partially stabilized zirconia (PSZ) foam-type absorbers with pore density of 10, 20, and 30 PPI (pores per inch) used as a volumetric absorber. A numerical model and an analytical approximation were developed to reproduce experimental results, and calculate the thermal conductivity, as well as volumetric heat transfer coefficient.

The results show that an increase in pore density leads to an increase in the temperature difference between the irradiated face and the rear face of the absorber, this occurs because when pore density increases the concentrated energy no longer penetrates in the deepest space of the absorber and energy is absorbed in areas close to the surface; therefore, temperature gradients are created within the porous medium. The opposite effect occurs when the airflow rate increases; the temperature gradient between the irradiated face and the rear face is reduced. This behavior is more noticeable at low pore densities, but at high pore densities, the effect is less relevant because the internal structure of porous absorbers with high pore density is more complex, which offers obstructions or physical barriers to airflow and thermal barriers to heat transfer.

When the steady state is reached, the temperature difference between the two faces of the absorber remains constant if the concentrate irradiation changes slightly, even changing the airflow rate. The results obtained in this work allow us to establish a selection criterion for porous absorbers that operate within solar reactors; this criterion is based on knowledge of the physical properties of the porous absorber, the environment, the working conditions, and the results expected.

Experimental evaluation and modeling of air heating in a ceramic foam volumetric absorber by effective parameters

Publicado en Revistas Arbitradas

Nidia Aracely Cisneros-Cárdenas, Rafael Cabanillas-López, Ricardo Pérez-Enciso, Guillermo Martínez-Rodríguez, Rafael García-Gutiérrez, Carlos Pérez-Rábago, Ramiro Calleja-Valdez, David Riveros-Rosas

Abstract

The radiation flux distributions produced by the concentrating solar systems used to produce thermal/electrical power are usually non-homogeneous. This results in non-uniform temperature distributions on the solar receivers, causing adverse effects on the system’s overall performance. An approach to better understand the problem is to study the surfaces around the focal zone where the radiation density is homogeneous (isosurfaces), generating them from experimental data. For this, it is necessary to superimpose built volumes of the different irradiance levels using parallel planes in different directions from the focal point of a concentrator. These volumes are known as effective volumes. This study presents the model used to generate effective volume produced by a point focus concentrator, comparing it with experimental results in a direction perpendicular to the focal axis. The effective volumes were developed considering a global optical error of the system of 2.8 mrad. The set of methods used to generate effective volumes has not been previously presented in the literature. The theoretical-experimental research consisted of the combination of the camera-target method and the simulations by the ray-tracing technique. The results showed effective volumes with the highest value of 10 MW/m2 and the lowest value of 4.5 MW/m2.

Study of the radiation flux distribution in a parabolic dish concentrator

Publicado en Revistas Arbitradas

Videos HoSIER

Entrevista HoSIER Factor Ciencia Canal Once (14/12/2015)