Héctor Iván González Camarillo

Tutor: Carlos A. Pérez-Rábago

Abstract

En este trabajo se presenta el diseño, construcción y la puesta en operación de un prototipo de sistema de control en lazo abierto para helióstatos de torre central, en el que se hace una propuesta de diseño económica capaz de abastecer los requerimientos y especificaciones necesarias para catalogar como eficiente y robusto el desarrollo del prototipo. Dicho sistema de control, permitirá poner en operación un mini helióstato de 5.6 𝑚!, y con la metodología de programación aplicada correctamente a este proyecto, se podrá interactuar con una interfaz de monitoreo de las variables en tiempo real del helióstato. Variables tales como el vector solar, la hora estándar, la posición angular del helióstato en todo momento y la posición en la que el helióstato debe referenciarse de acuerdo con un target de apuntamiento.

Para el diseño del dispositivo se realizó una revisión bibliográfica de los conceptos necesarios para poder desarrollar el proyecto, posteriormente se realizó un análisis de los componentes y equipo necesario para implementar una solución al diseño del sistema de control. Se hace mención que el análisis de los componentes se hace de acuerdo a las características y especificaciones del helióstato, ya que se contaba con la estructura de éste, de acuerdo con esto los componentes fueron categorizados y cotizados para el sistema de control.

Adjunto al diseño, se realizó un análisis del algoritmo de posición solar que se implementaría para obtener el vector solar, por cuestiones de práctica se optó por utilizar el algoritmo de Duffie & Beckman, el cual realiza operaciones con ecuaciones que comprenden constantes como la posición geográfica del helióstato, la hora estándar y el día Juliano de acuerdo a la fecha actual.
Posteriormente se diseñó una interfaz en LabVIEW que se muestra en una PC conectada por medio de cable Ethernet al controlador principal y que mediante protocolo TCP/IP transmite los datos en forma de texto para interactuar con la interfaz en la que se puede monitorear las variables en tiempo real.

El sistema de control se implementó de acuerdo a la solución de diseño en el cual funge como controlador principal un Arduino Mega 2560 que realiza los cálculos del algoritmo y la adquisición de datos de los encoders, así como la obtención de la fecha y hora en tiempo real mediante un módulo externo, motivo por el cual se buscaba establecer una autonomía respecto al cálculo del vector solar, y no tener cierta dependencia de la PC para realizar este tipo de cálculos.

Como etapa final se realizaron una serie de pruebas de validación del funcionamiento de cada una de las etapas del sistema, tanto en la etapa de control como la etapa de potencia y se determinó el funcionamiento eficiente del sistema propuesto.

Diseño, Construcción y Puesta en Operación de un Prototipo de Sistema de Control para Helióstatos de Torre Central

Publicado en Tesis

Brenda Valeria Bocanegra Zagal

Tutor: Carlos A. Pérez Rábago

Abstract

El Horno solar de altos flujos radiativos (HoSIER) es una instalación del Laboratorio Nacional de Sistemas de Concentración y Química Solar (LACYQS). El HoSIER  tuvo una primera etapa donde se construyeron las principales estructuras para poder concentrar energía solar, estas estructuras son un helióstato de 36 m2, un atenuador de 42.2 m2 y 211 espejos hexagonales de vidrio pulido, con cinco radios de curvatura distintas, los cuales se encuentran soportados en una estructura paraboloidal, los cuales conforman el concentrador. Posteriormente se hizo un helióstato plano de mayor tamaño (81 m2), así como se agregaron más espejos hexagonales al concentrador para completar 409 y componentes periféricos como la mesa de experimentación y un sistema de refrigeración los cuales son controlados y monitoreados mediante un sistema SCADA.

Para la segunda etapa se pretende desarrollar experimentación con reactores termoquímicos y fotoquímicos, además de realizar estudios térmicos  destructivos de materiales y para ello es necesario equipar  a la mesa de experimentación  con sistemas de alimentación de gases, sistemas de análisis de gases y equipos de medición de temperatura de no contacto.

Los sistemas de alimentación y análisis de gases son parte fundamental para la experimentación en reactores termoquímicos ya que al realizar ciclos termoquímicos basados en óxidos metálicos permiten la obtención de hidrogeno mediante la ruptura de la molécula de vapor de agua. Esto sucede mediante la reducción térmica de un oxido metálico con energía solar altamente concentrada obteniendo así la liberación de oxígeno. La reducción reacciona con agua y de esta forma  se libera hidrógeno y se recupera el óxido de partida.
Los sistemas de alimentación y análisis de gases se diseñaron en base a los requerimientos de algunos experimentos termoquímicos, además de que ya se tenía algunos de los componentes fue necesario agregar al diseño instrumentación electrónica para crear un sistema de alimentación y analísis de gases automatizado.

Para los dispositivos de los susbsistemas de alimentación y análisis de gases es necesario controlar y monitorear su comportamiento durante los experimentos. Para ello se utilizó programación en el entorno de LabVIEW además se utilizaron módulos para Compact RIO de National Instruments para realizar pruebas y adquisición de los datos entregados por los analizadores químicos.

Integración de equipos de análisis químico y térmico en la mesa de experimentación del Horno Solar de Altos Flujos Radiativos

Publicado en Tesis

María Militza Rosales Valles

Tutor: Dr. Camilo A. Arancibia Bulnes

Abstract

Un helióstato dentro de la tecnología de torre central es el dispositivo encargado de recibir y concentrar la radiación solar en un receptor. En Hermosillo, Sonora, México la UNAM en colaboración con la UNISON están desarrollando el Campo Experimental de Torre Central (CEToC), parte de las actividades que ahí se realizan se orientan al análisis del diseño, construcción, evaluación y caracterización de nuevos prototipos de helióstatos. La búsqueda de mejoras a los prototipos de helióstatos existentes en el CEToC se encamina a la optimización de su operación y abaratamiento de su manufactura. El presente trabajo describe el desarrollo de un prototipo de helióstato de 37.44 m2. Entre las mejoras incorporadas al presente diseño está una configuración de facetas en herradura, para que el helióstato sea abatible y disminuir así el ensuciamiento por polvo en el área reflejante; peso aligerado, a través de la reducción del espesor del vidrio y el consecuente aligeramiento estructural; un cabezal más barato y preciso, así como más ligero. Se simularon distintas formas de superficie para las facetas, esto para evaluar el desempeño de concentración de este sistema óptico, de esta manera se observó la factibilidad de aumentar la concentración propiciando la deformación de facetas, siempre y cuando éstas sean de los helióstatos cercanos a la torre. El criterio de diseño del nuevo marco estructural se rigió por la selección de componentes de dimensiones comerciales, evitando desperdicio de material y aminorando el trabajo de manufactura. Se simuló el comportamiento mecánico estructural del nuevo prototipo, de este análisis se deduce que el modelo carece de rigidez, y por tanto presenta grandes desplazamientos y deformaciones. Dichas características son indeseables en un concentrador óptico pues la calidad de la imagen que reflejan es deficiente. El nuevo helióstato se instaló en el CEToC, en donde se llevaron a cabo diversas pruebas para evaluar el desempeño global del prototipo. Estas pruebas fueron: mancha solar formada por el helióstato, reflexión de franjas, medición de la deformación de la estructura. Finalmente, se discuten los resultados de estas pruebas y se formulan conclusiones recomendaciones para trabajo futuro.

Diseño, Puesta en operación y Evaluación de un Helióstato con facetas Deformables

Publicado en Tesis

Víctor Manuel Maytorena Soria

Tutor: Dr. Jesús Fernando Hinojosa Palafox

Abstract

El estudio de la transferencia de calor en cavidades abiertas es un tema de gran interés por sus aplicaciones en varios campos de la ingeniería térmica como: diseño térmico de receptores en sistemas termosolares, enfriamiento de dispositivos electrónicos, construcciones, etc. Entre los mecanismos de transporte de calor en estos sistemas, la convección natural ocupa un lugar importante al estar siempre presente en cavidades abiertas.

Se han reportado en la literatura varios estudios de transferencia de calor en cavidades abiertas que pueden ser clasificados como: numérico, experimental y numérico- experimental. En el presente trabajo se plantea un estudio experimental y numérico de la convección natural turbulenta en una cavidad cúbica abierta considerando la influencia de la radiación.

Se consideraron diferentes flujos de calor constante (75, 150, 300, 450 W) en la pared vertical opuesta a la abertura, mientras que el resto de las paredes se aislaron térmicamente. Se analizó el efecto de la emisividad de las paredes considerando dos casos con emisividades reportadas en la literatura: (a) paredes cubiertas de aluminio pulido (0.05) y (b) las paredes están pintadas de negro (0.9).

Se utilizó el software de dinámica de fluidos computacional FLUENT 6.3 para realizar la simulación de cada caso experimental, se consideraron las propiedades termofísicas variables con la temperatura, se seleccionó el modelo de turbulencia k- y el esquema MUSCL en la discretización de los términos advectivos, el método de Coordenada Discreta para la Solución de la Transferencia de Calor por Radiación y para el acoplamiento de las ecuaciones se implementó el algoritmo SIMPLEC. Una vez obtenida la información numérica se compararon los perfiles de temperatura y coeficientes de transferencia de calor con los datos experimentales, también se muestran
y analizan los campos numéricos de: temperatura, magnitud de la velocidad y viscosidad turbulenta.

El espesor de la capa límite térmica adyacente a la pared caliente, se midió experimentalmente y se calculó mediante CFD, observándose un espesor que varió entre 0.025 m y 0.03 m, dependiendo de la emisividad de las paredes. Con los resultados obtenidos se determinó que los coeficientes de transferencia de calor aumentan con la emisividad y también que las diferencias porcentuales entre los valores experimentales y numéricos de los coeficientes de transferencia de calor y números de Nusselt promedio, aumentaron con la participación de la radiación.

Estudio teórico-experimental de la transferencia de calor conjugada en una cavidad cubica abierta en régimen turbulento

Publicado en Tesis

Videos HoSIER

Entrevista HoSIER Factor Ciencia Canal Once (14/12/2015)