E Anguera, CA Estrada

Abstract

In this paper, we present two statistical methods to quantify the heterogeneity of the irradiance flux distribution, in a Concentrator Photovoltaic (CPV) dense-array, based on its operation and the optimization of current-matching. Preventing non-uniform flux distribution from design avoids the generation of hot spots, current mismatch and increases the overall efficiency of the system. This new approach considers the effects of the lowest irradiance values in the performance of the complete array, and its performance was corroborated by the simulations of a CPV array modelled in Matlab/Simulink; the irradiance distribution data as an input parameter was obtained from the images taken in a homogenization experiment, in the HoSIER, an 18,000 X solar furnace. The results are interpreted through the new concept of photovoltaic homogeneity, proven that the methodology successfully predicts the flux distributions, which enhances the efficiency of a series connected CPV array. Additionally, we found that the proposed methodology can also be used to optimize the electrical performance of dense-array CPV systems, working under the effects of non-uniformity illumination by rewiring the series connections into series-parallel configurations.

A new approach for evaluating flux uniformity for dense array concentrator photovoltaic cells

Publicado en Revistas Arbitradas

Videos HoSIER

Entrevista HoSIER Factor Ciencia Canal Once (14/12/2015)